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In Animal learning and cognition: A neural network

approach, Schmajuk bravely attempts to construct
neural-network models that explain the collective
knowledge of the past century of research on learning
and cognition in animals. The major goal of this book is
to provide a unified theory of the biological basis for
associative and cognitive processes in animals. At its
core, the model relies on a single mechanism, referred to
as the ‘‘delta rule,’’ by which brains build associations
between cues and the events they predict. The delta rule
has frequently been invoked by learning theorists for the
past half century (e.g., Bush & Mosteller, 1955;
Mackintosh, 1975; Pearce, 1987; Rescorla & Wagner,
1972) and has appeared as the central mechanism of
many other connectionist and neural-network models
(e.g., Pearce, 1994; Rosenblatt, 1962; Sutton & Barto,
1981; Widrow & Hoff, 1960). In the framework of
neural-network models, associations manifest them-
selves as neural connections and the representation of
information about the world is distributed across the
network of connections. As the book unfolds, Schmajuk
reveals how the instantiation of a modified Rescorla–
Wagner delta rule as the basis for establishing neural
connections can be used to build larger and more
complex systems that can handle a variety of complex
cognitive behaviors such as higher-order conditioning
and occasion setting, pattern learning, choice behavior,
and animal navigation.
There is much to commend about this book. Fore-

most, it provides a new and powerful type of modeling
that has received relatively little attention in the field of
animal learning and cognition. Neural-network and
connectionist approaches to modeling have been a boon
to human cognitive psychologists and behavioral
neuroscientists. These models have guided the investiga-
tion of brain mechanisms of behavior and continue to
guide the search for new discoveries.
The broad scope of this book brings a refreshing

change to the field of animal learning and cognition. The
field is currently fragmented into numerous independent
‘‘camps,’’ each with uncompromising adherents to
individual theories or perspectives, and there is relatively

little open communication between camps. Even differ-
ences in ideology can act as barriers to the exchange of
scientific information, such as Behaviorism vs. Cogniti-
vism vs. Reductionism. As a result of the cliquish nature
of experimental psychologists (and scientists in general),
there are a large number of theories or theoretical
frameworks that have been independently put forth to
explain limited sets of data. However, the diverse
behaviors investigated by these separate avenues of
research share many fundamental underlying processes.
For example, the rules governing associative acquisition
and cognitive mapping are strikingly similar, indicating
that these processes may result from the same behavior-
al, and perhaps even the same neural, mechanisms.
Thus, Schmajuk’s attempt to cast his theoretical net
across a diversity of research pools is particularly
noteworthy and commendable. And he could not have
picked a more powerful and widely used mechanism
than the delta rule upon which to build a unified theory
of animal cognition. The delta rule is a simple, error-
correcting learning mechanism that builds associations
between a cue and an outcome as a function of how well
the cue predicts the outcome. By invoking the delta rule
as the basic mechanism in his neural-network models,
Schmajuk is able to construct elaborate networks to
account for the diversity of behavioral phenomena from
the entire field of animal learning and cognition. For
example, the book contains networks designed to
explain simple associative learning, including competi-
tion between predictors; complex associative processes,
such as occasion setting and configural patterning;
operant behavior; and cognitive processes, such as
spatial navigation and the use of mental maps.
Another noteworthy feature of Schmajuk’s models is

that they compute real-time predictions of animal
behavior. Most contemporary associative models make
predictions only on limited, and often contrived samples
of time, such as by each trial or upon the occurrence of
an external event. Some of the more eminent trialwise
models include those of Rescorla and Wagner (1972),
Mackintosh (1975), Pearce and Hall (1980), and Pearce
(1987). But brain processes do not cease to operate
during the time between trials or events. Thus, these
models do not accurately capture the true nature of the
ongoing, dynamic neural activity that results from
learning experiences. Currently, Wagner’s (1981) Some-
times Opponent Processes (SOP) model is one of the few
learning models that provides real-time predictions
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regarding the learning process. However, Wagner’s
model, as currently stated, is limited to the set of simple
associative processes. Therefore, Schmajuk makes a
major advance in offering a real-time model to account
for the entire range of animal cognition.
Finally, I applaud Schmajuk’s praiseworthy attempt

to wed learning and cognitive processes with the
presumed underlying neural processes. Most contem-
porary theories of animal learning and cognition are
silent about how they map onto the nervous system, or
at best make speculative guesses as to which brain areas
may be responsible for certain processes and computa-
tions. However, behavior is a direct product of
physiological processes, so eventually psychologists will
need to have biologically plausible models of animal
behavior. For instance, the field of human cognitive
science has undoubtedly benefited from our current
understanding of the human brain, with progress from
research in perception, cognition, psychopharmacology,
behavioral and cognitive neuroscience, and clinical
psychology weaving together a coherent picture of the
human brain and how it functions.
Although there is much to commend about the book,

there are also many problems with it. I will address three
major criticisms I have of the book: (a) the neural-
network models presented in the book are not biologi-
cally plausible; (b) the book is very difficult to read, and
therefore restricts itself to a narrow audience, and the
model itself is difficult to use; and (c) the model fails to
account for many important animal learning data.

The neural-network model is not biologically plausible:
Is the field of animal learning and cognition ready to be
accurately modeled in a biologically plausible way or are
we currently better off with theories of behavior that do
not tie themselves so specifically to brain processes?
Although great strides have been made in our under-
standing of how the nervous system works and the brain
locations of general behavioral processes, we are still far
from understanding how simple associative processes
are truly represented in the brain (e.g., Shors & Matzel,
1997, 2000). This calls into question one of the core
assumptions of the book, that ‘‘associative learning
reflects changes in the efficacy of synapses’’ (p. 9).
Though changes in synaptic efficacy may be one result
of conditioning treatments, it is by no means clear how
such changes are directly responsible for the molar
behavior observed in the laboratory or in the field.
There is growing evidence for the important role
intracellular and molecular mechanisms play in many
aspects of behavior, including associative learning and
the timing of conditioned responses (e.g. Fisher, Fischer,
& Carew, 1997; Gibbon, Malapani, Dale, & Gallistel,
1997; Meck, 1996). It is clear that the search for
Lashley’s engram is still closer to a pipe dream than to a
reality, and may even incorrectly conceptualize how
brain processes contribute to behavior. We know that

there are many ways the brain probably does not

produce behavior. For example, there are many
convincing studies showing that extinction (i.e., non-
reinforcement of a conditioned stimulus) does not result
in the unlearning of a conditioned stimulus–uncondi-
tioned stimulus (CS–US) association. Rather, models of
extinction as an inhibitory process or as a type of
memory-interference process fit the empirical data far
better. The delta rule, which lies at the heart of
Schmajuk’s neural-network approach, treats extinction
as unlearning. Therefore, a core feature of Schmajuk’s
model is biologically implausible.1

The model is difficult to understand and use: Animal

learning and cognition presents a unified theory and
therefore covers a wide range of disciplines. Any book
that traverses separate disciplines should provide a clear
and readable map of all terrains covered. Having
expertise in the field of experimental psychology but
not in behavioral neuroscience, I approached this book
with the hope of learning something about neural-
network modeling and its application to the type of
molar animal behavior I study. The book, however,
assumes expertise in both fields. I struggled with the
many details of the model and how it handles behavioral
phenomena. In my opinion, this link between the
mathematics of the model and animal behavior receives
too little attention. What is worse, the model is very
complex and requires the use of a lot of mathematics.
The model uses at least 11 parameters
(lUS;Vi;US;BUS; ti;Ki;R; y;Xi;Zi; Novelty, and Hi;j),
many of which are enumerated in the simulations
presented in the text. For example, the simulation on
p. 73 contains 19 separate values of K alone! Although
the density of parameters allows the model to account
for a large spread of behavioral phenomena, it interferes
with comprehension and ease of use. The mathematics
should serve as a tool to better understand psychology,
not interfere with it or serve as a replacement. The fact
that a simulatable version of the model on computer
disc is included with the book only attests to the
complexity of the model’s computations. This complex-
ity compromises the model’s heuristic value and its
ability to make crisp, clean predictions, both hallmarks
of the Rescorla and Wagner (1972) model. In fact, by
changing parameters or connections, the model is able
to be reworked to explain almost any experimental
outcome. Protean models are difficult to grasp and lack
utility. Science advances not through clever curve fitting

1Schmajuk’s model is biologically implausible in another way, as

well. There is much evidence that each distinct area within the brain is

multifunctional and contributes to many processes. However, Schma-

juk proposes that specific areas of the brain only perform specific

computations. For example, he proposes that the entorhinal cortex of

the hippocampus only performs one computation whereas the

hippocampal CA3/CA1 cells only perform another computation.

There is little support for such an extreme modular view.
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but by promoting falsifiable models that inspire the
search for new phenomena and knowledge.
Likewise, non-experts of the field of animal learning

and cognition will only be confused by the terse
coverage of the behavioral phenomena the model
purports to explain. For example, the contents of at
least one-half of a learning textbook are squeezed into
12 pages (pp. 20–31) of text. And many important
experimental results in learning theory from the last 20
years receive no attention (probably because they are
problematic for Schmajuk’s model). Furthermore, the
brusque exposition of the model’s successes do not
sufficiently connect the model with the behavior of real
living animals. Curve after curve of simulated data is
presented to show that the model can produce all the
basic phenomena of animal learning and cognition.
Nevertheless, one wonders if all that is being done is
curve fitting to limited sets of data. Much of the actual
data the simulations are compared to come from
experiments on rabbit eye-blink conditioning. But will
the model accurately predict these effects in other
species, such as rats, pigeons, or humans; and using
different paradigms, such as the conditioned emotional
response, taste-aversion learning, or appetitive condi-
tioning? There are many discrepant findings in the
literature that result from the use of different species or
tasks. It does not seem likely that Schmajuk’s model will
be able to handle such contradictions without resorting
to a fair bit of parameter manipulation.
Because the book is so impenetrable, it can only fail to

reach a broad audience—a major shortcoming. Instead,
the book is accessible primarily to scientists with a
strong background in both classical conditioning and

neural-network modeling. It is written for those who can
look at mathematical equations and immediately say to
themselves ‘‘Ah! I see what is going on.’’ Perhaps the
problem with the book is that it largely reflects a
thorough archeology of Schmajuk’s publishing history.
It is as if each chapter was independently adapted from a
few narrowly focused articles published in technical
books or journals. These articles present specially
designed neural networks tailored to specific behavioral
phenomena, such as the acquisition and extinction of
associations (Schmajuk & DiCarlo, 1991b), latent
inhibition (Schmajuk, Lam, & Gray, 1996), escape and
avoidance learning (Schmajuk, 1994; Schmajuk, Urry, &
Zanutto, 1998), stimulus configuration and place learn-
ing (Schmajuk & Blair, 1993), occasion setting (Schma-
juk, Lamoureux, & Holland, 1997), and cognitive maps
(Schmajuk & Thieme, 1992; Schmajuk, Thieme, & Blair,
1993). Other articles provide accounts of the presumed
physiological underpinnings of such behaviors, such as
how the hippocampus modulates classical conditioning
(Schmajuk, 1989; Schmajuk & DiCarlo, 1991a; Schma-
juk & Moore, 1985, 1988). The book reads more like a
collection of articles filled with technical jargon and

complicated equations, rather than as a textbook for the
average psychologist or science-minded layperson.
There does not seem to be any attempt to bring the
material down to ‘‘our’’ level.
It may seem to someone without a strong background

in animal learning and cognition that these neural
networks provide accurate accounts of animal behavior.
The model (or suite of models, this is never made clear)
is presented as a statement of fact. The perception that
the theory is iron-clad is strengthened by the inclusion
throughout the text of many simulated curves that
match the empirical data almost perfectly. However, a
quick look beyond the cited data shows just how limited
the book’s successes really are. For example, there are
many findings in the classical conditioning literature
that contradict not only individual neural-network
models presented in the book, but the very foundational
assumptions that they are built on. Schmajuk largely
ignores empirical data that are inconsistent with the
model—data that reveal a number of theoretical flaws.

The model fails to account for many important animal

learning data: I will address four representative flaws in
turn. Many of these flaws result from using the Rescorla
and Wagner (1972) learning algorithm to compute
changes in connection weights (i.e., associations). While
the Rescorla–Wagner model has enjoyed many successes
in the past 30 years, there are clearly many failings with
it (see Miller, Barnet, & Grahame, 1995). For example,
the Rescorla–Wagner model (and therefore, Schmajuk’s
neural-network model) treats extinction as the unlearn-
ing of the original CS–US association. Evidence contra-
dictory to this ‘‘extinction as unlearning’’ view comes
from demonstrations that extinction is reversible in the
absence of additional CS–US pairings. Some examples
include spontaneous recovery of responding to the
extinguished CS (Pavlov, 1927), external disinhibition
(Pavlov, 1927), and ‘‘renewal’’ of excitatory responding
to the extinguished CS when tested in a different context
than that in which extinction took place (e.g. Bouton &
Bolles, 1979). An alternative explanation for the effects
of extinction is that it produces new learning that
interferes with retrieval and expression of the original
learning (e.g. Bouton, 1993). Thus, a realistic neural
model of behavioral extinction should not treat extinc-
tion as unlearning but in some other way, such as
response inhibition or the contextual control of
responding.
Schmajuk’s model (as does that of Rescorla &

Wagner, 1972) also incorrectly predicts that a condi-
tioned inhibitor can be extinguished through non-
reinforced presentations of the inhibitor alone. Schma-
juk erroneously claims that his model predicts no
extinction of inhibition (p. 44). He claims that the
aggregate prediction of the US ðBUSÞ cannot become
negative and therefore a conditioned inhibitor cannot be
extinguished via conventional extinction treatment.
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However, his model clearly states that the predicted US
is equal to the sum of the associative strengths of the
CSs currently present. Because the inhibitor has a
negative associative strength ðVCS�;USo0Þ; when it is
presented in the absence of an excitatory CS, the
predicted US is negative (i.e., BUS ¼ �VCS�;US Þ: There-
fore, contrary to what Schmajuk claims, inhibitor-alone
presentations result in an underexpectation of the US
(i.e., lUS ¼ 0;BUSo0; therefore, lUS � BUS40), thereby
extinguishing the inhibitor’s negative associative
strength. This prediction is not supported by the data
(e.g. DeVito & Fowler, 1986, 1987; Hallam, Grahame,
Harris, & Miller, 1992; Williams, Travis, & Overmier,
1986; Zimmer-Hart & Rescorla, 1974) which show that
extinction treatment given to an inhibitory CS, if
anything, increases inhibition.
The model also fails (as does that of Rescorla &

Wagner, 1972) to adequately account for cue-competi-
tion effects, such as overshadowing, blocking, over-
expectation, and the effect of relative stimulus validity.
Cue-competition effects result when the target CS is
conditioned in compound with a more salient or more
valid predictor of the US, resulting in attenuated
responding to the target CS (relative to a control group
lacking the competing predictor). In the framework of
Schmajuk’s model, the competing CS prevents the target
CS from acquiring a strong association with the US.
However, many recent demonstrations contradict this
prediction, indicating instead that a strong, but latent,
target CS–US association is acquired during cue-
competition training (e.g. Balaz, Gutsin, Cacheiro, &
Miller, 1982; Batsell, 1997; Blaisdell, Bristol, Gunther, &
Miller, 1998; Blaisdell, Denniston, & Miller, 1999a,
2001; Blaisdell, Denniston, Savastano, & Miller, 2001;
Blaisdell, Gunther, & Miller, 1999b; Cole, Barnet, &
Miller, 1995b; Cole, Denniston, & Miller, 1996; Cole,
Gunther, & Miller, 1997; Kasprow, Cacheiro, Balaz, &
Miller, 1982; Kaufman & Bolles, 1981; Kraemer,
Lariviere, & Spear, 1988; Matzel, Schachtman, & Miller,
1985). Such effects are better explained by performance-
focused models of compound conditioning (e.g. Dennis-
ton, Savastano, & Miller, 2001; Miller & Matzel, 1988)
where the competition between multiple predictors of an
outcome occurs at a late stage of processing, such as in
the retrieval or expression of learned associations.
Finally, according to Schmajuk’s model, second-order

conditioning (by which a cue comes to produce a
conditioned response through pairings with an estab-
lished CS) must always be inferior to first-order
conditioning (p. 49). However, there are a number of
published demonstrations showing that second-order
conditioned responding can be superior to first-order
conditioned responding (e.g. Barnet & Miller, 1996;
Cole, Barnet, & Miller, 1995a). Related to this failure of
the model is its inability to deal with simultaneous and
backward excitatory conditioning. Although simulta-

neous and backward conditioning procedures often
result in little or no excitatory conditioned responding
which is consistent with the model, there have been
many successful demonstrations of strong excitatory
responding following backward conditioning (e.g. Bar-
net & Miller, 1996; Cole & Miller, 1999; Heth, 1976; for
a review see Spetch, Wilkie, & Pinel, 1981).
I must commend Schmajuk for his diligence to

construct a model that attempts to bridge the gap
between behavioral processes and brain functioning, as
well as to unify the broad scope of research in animal
learning and cognition. The model’s explanatory power
capitalizes on the successes of the Rescorla and Wagner
(1972) model and extends them to new behavioral
phenomena and domains. The model also makes real-
time predictions of behavior, which is better than most
contemporary learning models can do. The field of
animal behavior and learning theory can only move
forward with such bold attempts. However, the model
shares the many failures as well as the successes of the
Rescorla–Wagner model. These failures weaken the
plausibility that the model accurately represents the
mechanisms by which behavioral processes are mapped
onto the brain. Although the Rescorla–Wagner model
lacks biological plausibility, its elegant simplicity has
allowed it to be a driving force of empirical research and
inspire new theories of animal learning for the past 30
years. Conversely, the neural-network models proposed
in Animal Learning and Cognition are anything but
simple and straightforward. Furthermore, the fact that
the book is written at a highly technical level, with
relatively little translation from mathematical speak to
plain English, makes for difficult reading by lay
scientists and experimental psychologists alike. Unfor-
tunately, all of these factors diminish the potential
impact this book may have on the field of animal
learning and cognition. Nor would it be a good choice as
a textbook for a graduate-level course on the subject.
Nevertheless, this book should prove a valuable
resource for mathematically sophisticated psychologists
and neuroscientists who wish to approach animal
learning and cognition from a neural-network perspec-
tive.
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