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1                                  11  Rational Rats
Causal Inference and Representation   

    Aaron P.     Blaisdell    and     Michael R.     Waldmannd 

   Introduction

 “When we try to pick out anything by itself, we fi nd
it hitched to everything else in the Universe.”
 John Muir (My First Summer in the Sierra.( 
Boston: Houghton Miffl  in, 1911)

 Th ere are three types of questions we use to inter-
rogate our world: “What?” and “Who?” questions 
are about the objects and agents that populate our
world; “Where?” and “When?” questions are about 
the spatial and temporal locations of those objects; 
“Why?” and “How?” questions are concerned with 
the causality of our world. Although these questions 
are all in the purview of our epistemological quest, 
questions about causality have remained the most 
intractable, both scientifi cally and philosophically. 

 Modeling the universe is a daunting task, given 
its sheer complexity, and hidden variables abound. 
Yet modeling pieces of the universe at extremely local
scales has become a straightforward and tractable 
endeavor. With a simple set of starting principles, we

can isolate and dissect a system of interacting forces 
(by constructing what is called a free-body diagram), 
such as a wheel and axle, a mortar and pestle, a cue 
stick and a set of billiard balls, or a squirrel clinging 
to a tree branch. Using the cumulative knowledge of 
science and engineering, we can understand more 
complex causal systems, such as aplysia neural net-
works and mouse genomes; we can even create 
relatively complex fully functional causal systems, 
such as an automobile engine or a computer and its 
software. 

 It perhaps comes as no surprise that philosophy 
has recognized the role of causality as the “cement of 
the universe” (Mackie,   1974  ) that underlies the 
orderly relations between observable events. 
Psychologists have also acknowledged that to be 
a successful agent, we need to have causal represen-
tations that mirror the causal texture of the 
world (Blaisdell,   2008  ; Tolman & Brunswik,   
1935  ; Waldmann, Cheng, Hagmayer, & Blaisdell, 
  2008  ).     

Abstract

Humans are causal agents par excellence. But what are the psychological processes that have evolved 
to produce human causal cognition? And which aspects of causal cognition are uniquely human and
which are shared with other species? This chapter describes how a computational model of causal
inference, causal model theory, can usefully frame these questions and allow the design of experiments
that can illuminate the underlying psychological competencies. The model specifi es procedures that
allow organisms to go beyond the information given to distinguish causal from noncausal covariations.
By using this model we assume that organisms such as rats and people have evolved to approximate
rational causal inference. The chapter discusses experimental investigations of rat behavior under 
conditions designed to test the predictions of causal model theory.

Keywords:  human causal cognition,   rational models,   rat behavior  ,   causal maps,   causal model
theory       

11_Zentall and Wasserman_11.indd   17511_Zentall and Wasserman_11.indd   175 11/7/2011   10:15:34 AM11/7/2011   10:15:34 AM

OUP UNCORRECTED PROOF – REVISES-PROOF,07/11/2011, CENVEO



176 rational rats

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1    Causal Learning in Humans   
 Humans are causal agents  par excellence . But what 
are the psychological processes that have evolved to 
produce human causal cognition? And which 
aspects of causal cognition are uniquely human and 
which are shared with other species? In this chapter, 
we describe how rational models of causal cognition 
can usefully frame these questions and allow us to 
design experiments that can illuminate the underly-
ing psychological processes. We use a rational model 
as a starting assumption in our experiments. We 
start with the assumption that organisms such as 
rats and people are rational in that they have been 
designed by evolution to draw some important 
inferences in a rational manner based on informa-
tion they have acquired through experience. Th is is 
just an assumption of convenience and it is used as 
a heuristic. We do not mean to imply that rats or 
people ARE fully rational, only that a rational model 
makes testable predictions about some relevant 
behaviors under certain conditions. 

 Many of the events of the world appear to us to 
be directly connected by cause–eff ect relationships. 
Th e philosopher David Hume questioned this view 
in his seminal writings (e.g., Hume, 1748/1977). 
Hume looked at situations in which he observed 
causal relations and did not detect any empirical 
features that might correspond to causal powers. 
Causal power is the intuitive notion that one thing 
causes another by virtue of a hidden, unobserved 
power that it exerts over the other. Th at is, causal 
power involves the inference of the transference of 
force, energy, or a conserved quantity such as 
between two colliding billiard balls or the change in 
charge of a photocell when a photon collides with it 
(see Dowe,   2000  ). Hume did not fi nd any evidence 
for causal powers when observing causal relations; 
what he found instead was spatiotemporally ordered 
successions of events. 

 So, why do we believe in causal powers? Hume’s 
answer was that knowledge of the causal texture of 
the world was merely an illusion derived from 
observed statistical regularities. Illusions can be 
quite useful — as indeed they have been shown to be 
for our functioning visual system — but they are a 
construct of the mind rather than an objective, 
veridical importation from the physical universe. 

 Contemporary learning theorists have adopted 
Hume’s empiricist approach in their theories of 
causal learning. Associations derived from spa-
tiotemporally connected events, such as through 
Pavlovian and instrumental conditioning, serve in 
these theories as the basis for causal predictions 

(e.g., Allan,   1993  ; Killeen,   1981  ; Shanks & 
Dickinson,   1987  ; Wasserman,   1990  ). Causal pre-
dictions based on covariations between events are 
deemed suffi  cient to explain our causal inferences, 
with no need to resort to the elusive concepts of 
causal powers or processes. 

 Hume’s analysis of causality leaves us with a 
puzzle. His claim seems correct that covariations 
between observable events are the primary percep-
tual input for causal inductions. On the other 
hand, he does not explain why we do not stick to 
covariations, but try to go beyond the given infor-
mation by assuming hidden capacities, forces, or 
mechanisms beyond the surface of orderly event 
successions (Ahn, Kalish, Medin, & Gelman,   1995  ; 
Cheng,   1997  ). Hume was right when he pointed to 
covariations as the primary experiential evidence for 
causal relations. Nevertheless, his empiricist episte-
mology prevented him from taking the next step. As 
many philosophers of science have shown, apart 
from concepts referring to observable events, our 
theories also contain concepts that are only indi-
rectly tied to the observable data (see Glymour & 
Stalker,   1980  ; Quine,   1960  ; Sneed,   1971  ). Causal 
powers may be such theoretical concepts, which 
people infer based on covariation information 
(Cheng,   1997  ). 

 Why are we unsatisfi ed with mere covariations? 
Why are we so interested in causal powers and 
mechanisms? Diff erent factors may contribute here. 
Infants may be born with a natural tendency to 
interpret causal events as caused by hidden forces 
(e.g., Carey,   2009  ; Leslie & Keeble,   1987  ). Other 
researchers have suggested that the tendency to 
interpret events causally may be triggered by infants’ 
experience of their own actions changing events in 
their environment, which might provide the basis 
for further causal knowledge (Dickinson & Balleine, 
  1993  ; White,   2006  ). Most likely both factors are at 
play, but we know very little about their relative 
contributions. 

 Regardless of the origin of our tendency to form 
causal representations, there are a number of com-
putational reasons for the usefulness of causal repre-
sentations over representations that merely refl ect 
covariations. Recent theoretical developments in 
philosophy, statistics, and psychology have pin-
pointed a number of computational advantages of 
causal models (Cheng,   1997  ; Glymour,   2001  ; 
Gopnik et al.,   2004  ; Lagnado et al.,   2007  ; Pearl, 
1988, 2000; Sloman,   2005  ; Spirtes, Glymour, & 
Scheines,   1993  ; Steyvers, Tenenbaum, Wagenmakers, 
& Blum,   2003  ; Tenenbaum, Griffi  ths, & Kemp, 
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1   2006  ; Griffi  ths & Tenenbaum,   2009  ; Waldmann, 
  1996  ; Waldmann & Holyoak,   1992  ; Woodward, 
  2003  ). 

 What do those representations of causal 
models give us that we cannot get from associative 
knowledge?  

   1. Causal knowledge allows us to accurately 
represent causal directionality and causal 
structure.  Although a fl agpole perfectly covaries 
with its shadow, we recognize that the fl agpole 
causes the shadow and not vice versa. By 
representing this particular causal structure or map, 
we can make strong inferences about interventions: 
for example, moving the fl ag will make the shadow 
move, but shining our fl ashlight on the shadow 
will not aff ect the fl ag. By contrast, covariations are 
undirected and therefore do not allow informed 
inferences about the outcomes of interventions. 
A number of experiments with adults have 
demonstrated that people are sensitive to causal 
directionality and the causal type (cause vs. eff ect) 
of the learning events. Moreover, people are 
capable of separating representations of causal 
structure from the temporal order of learning 
events. Th at is, People diff erentiate between cues 
that represent causes from cues that represent 
eff ects (Waldmann, 2000, 2001; Waldmann & 
Holyoak,   1992  ; Young,   1995  ).  

   2. Causal power.  Covariation is only an indirect 
indicator of causal power (Cheng,   1997  ). Th is point 
can be most easily seen with ceiling and fl oor eff ects. 
A generative cause will not covary with its eff ect if 
the eff ect is already at its maximal value before the 
cause is set. Th us, it is possible that an event has 
causal power, but cannot display it in a measurable 
covariation. Causal power is a theoretical concept 
that expresses the strength of a cause in an ideal 
situation in which alternative causes are absent. In 
real life, in which we are constantly confronted with 
complex causal scenarios, we cannot observe such 
ideal situations. Nevertheless, Cheng (  1997  ) has 
shown that we can estimate causal power based on 
covariation when certain boundary conditions hold, 
and numerous studies have demonstrated that 
people often go beyond mere covariations and try to 
estimate causal power (Buehner & Cheng,   2005  ; 
Buehner, Cheng, & Cliff ord,   2003  ; Cheng,   1997  ; 
Griffi  ths & Tenenbaum,   2005  ; Liljeholm & Cheng, 
  2007  ; Waldmann & Hagmayer,   2001  ; Wu & 
Cheng,   1999  ).  

   3. Causal versus noncausal covariations.  
Another important distinction that cannot be 

made by the covariation view is between causal 
relations and spurious noncausal relations, which 
both can display equal amounts of covariation. 
Yellow teeth and lung cancer covary due to a 
common cause, smoking, although they are not 
directly causally related. Th e importance of this 
distinction can be best demonstrated when 
thinking about interventions. Interventions will 
work only when they target direct or indirect 
causes of an eff ect, but they will universally fail 
when they involve events that only spuriously 
covary with the outcome. Brushing your teeth with 
whitening toothpaste will not aff ect the incidence 
of lung cancer, whereas quitting smoking will. Th is 
distinction allows us to eff ectively plan actions by 
choosing to intervene only on causes and not to 
waste eff ort intervening on events that are only 
spuriously related to the target eff ect (Woodward, 
  2003  ). A number of researchers have shown that 
adults and children are sensitive to the structural 
consequences entailed by interventions (Gopnik 
et al.,   2004  ; Meder, Hagmayer, & Waldmann, 
2008, 2009; Sloman & Lagnado,   2004  ; Waldmann 
& Hagmayer,   2005  ).  

   4. Inferring hidden causes.  When a doctor 
observes nasal congestion, red, watery eyes, swollen 
lymph nodes, and a cough, he or she can diagnose 
a viral infection as the probable cause of a common 
cold. When an infant observes a bean bag being 
tossed from behind a screen, he or she acts 
surprised if the screen is subsequently removed to 
fi nd nobody there (Saxe, Tzelnic, & Carey,   2007  ). 
Th ese examples demonstrate the capacity that 
humans, even very young children, possess in 
drawing inferences about hidden causes from 
patterns of observed statistical associations among 
events. Th is inference process uses covariations as 
input, but it allows us to go beyond an associative 
explanation that can deal only with observable 
events and their interrelations (Blaisdell,   2008  ; 
Gopnik et al.,   2004  ; Kushnir, Gopnik, Lucas, & 
Schulz,   2010  ; Waldmann, Hagmayer, & Blaisdell, 
  2006  ; but see Blaisdell et al.,   2009  ).  

   5. Causal representations off er the advantage of 
parsimony.  We would need to encode 15 pairwise 
covariations to learn predictive relations between 
6 events. Causal models provide more 
parsimonious representations. If we know, for 
instance, that high sugar consumption is the 
common cause of insulin resistance, wildly 
fl uctuating levels of serum glucose, dental caries 
(cavities), osteoporosis, and a high body mass 
index (due to visceral fat storage) (Taubes,   2007  ), 
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1 then we can infer all 15 covariations among these 
events from knowledge about the base rate of the 
common cause and the 5 covariations between the 
common cause and each of its eff ects (Pearl, 1988, 
2000; Spirtes et al.,   1993  ).  

   6. Observation-based and intervention-based 
predictions.  One of the most important capacities 
going beyond associative representations concerns 
our ability to derive predictions for hypothetical 
observations and interventions from observational 
learning data. Associative theories can distinguish 
between these cases when learning encompassed 
both observational learning (i.e., classical 
conditioning) and intervention learning (i.e., 
instrumental conditioning), but they lack the 
ability to base these two types of predictions on 
observational learning input alone. Research on 
causal Bayes nets (Spirtes et al.,   1993  ; Pearl,   2000  ; 
Woodward,   2003  ) has shown how these 
predictions can be formally derived (see also 
Waldmann et al.,   2008  , for an alternative 
formalism). Suppose we observe a change in the 
level of a barometer. We also expect to observe a 
concomitant change in the weather. Th is 
expectation holds because the state of the 
barometer and the weather are both directly 
aff ected by changes in atmospheric pressure (Fig. 
  11.1  , left panel). Th us, all three events covary. If we 
observe one of the three events, an associative 
covariation-based theory would predict that we 
expect the other two events as well. A causal model 
account would make the same prediction when 
predictions are based on the observation of events 
within the causal model. Th e same prediction 
would turn out wrong, however, if it was based on 

an eff ect whose state has been generated by an 
external intervention. One fundamental aspect of 
our causal knowledge is that we know that 
observing eff ects allows us to diagnostically infer 
the presence of their causes, but manipulating these 
events does not alter their causes, only their eff ects. 
Th us, if we intervened and tampered with the 
barometer, thereby artifi cially altering its reading 
(Fig.   11.1  , right panel), we would not expect a 
change of the weather. An intervention renders the 
barometer independent of its normal causes 
(changes in air pressure) because those causes are 
no longer setting it — the intervention is setting it 
(Pearl,   2000  ; Spirtes et al.,   1993  ). Numerous 
empirical studies have shown that children and 
adults can distinguish between observation-based 
and intervention-based predictions (Gopnik et al., 
  2004  ; Meder et al., 2008, 2009; Sloman,   2005  ; 
Sloman & Lagnado,   2005  ; Sloman & Hagmayer, 
  2006  ; Waldmann & Hagmayer,   2005  ; Waldmann 
et al., 2006, 2008), which can be modeled by 
causal Bayes nets (Pearl, 1988; 2000; Sloman, 
  2005  ; Spirtes et al.   1993  ; Woodward,   2003  ).      

 Th is short overview demonstrates the computa-
tional advantages of causal knowledge over knowl-
edge that merely contains information about 
covariations. Causal knowledge is not only impor-
tant when learning about the world, but it also 
underlies category formation (Lien & Cheng,   2000  ; 
Waldmann & Hagmayer,   2006  ), planning (Pearl, 
  2000  ), decision making (Hagmayer & Sloman, 
  2009  ; Sloman & Hagmayer,   2006  ), and moral 
judgments (Hauser,   2006  ; Waldmann & Dieterich, 
  2007  ).     

Observation

Atmospheric
pressure

Intervention

Storm
Barometer

reading

Atmospheric
pressure

Storm
Barometer

reading

     Fig. 11.1    Observing an eff ect (left) versus intervening in an eff ect (right) of a common cause. While an observation of an eff ect 
allows inferring the presence of its cause, an intervention in the same variable renders this variable independent of its cause. See text 
for details.    
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1    Causal Reasoning in Rats   
 One question raised by the extensive evidence that 
humans engage in rational causal reasoning pro-
cesses is whether nonhuman animals stick to cova-
riations or can also reason about causation (Gopnik 
et al.,   2004  ; Gopnik & Schulz,   2007  ; Kushnir & 
Gopnik,   2005  ). Although many developmental 
psychologists posit that even infants have the capac-
ity for causal representations (see Carey,   2009  , for a 
recent review), many researchers draw a line between 
human and nonhuman animals, turning causal rea-
soning into a uniquely human capacity similar to 
language (Bonawitz et al.,   2010  ; Penn, Holyoak, & 
Povinelli,   2008  ; Penn & Povinelli,   2007  ). For exam-
ple, Povinelli (  2000  ) claimed that chimpanzees, 
unlike humans, are incapable of reasoning about 
hidden forces and causal mechanisms (see also 
Tomasello & Call,   1997  ). One shortcoming of this 
research, however, is that the competencies of chim-
panzees were typically tested with relatively complex 
tasks that require fairly elaborate physical knowl-
edge about mechanisms. It may well be that animals 
lack such knowledge, but they may still have a basic 
understanding of the diff erence between causal and 
noncausal covariations. 

 Causal model theory may therefore be a better 
framework to test whether animals understand the 
basic features of causality. Causal model theory 
specifi es causal knowledge on a relatively abstract 
level without requiring deep knowledge about phys-
ics. It is certainly possible to have a basic causal 
understanding of a situation without detailed mech-
anism knowledge. Basic causal knowledge is present 
if we can distinguish causes from eff ects and if we 
have at least some vague intuitions about causal 
structure. As shown above, this skeletal knowledge 
allows us to make numerous interesting inferences. 
Th us, causal model theory seems better suited to 
explore causal reasoning in animals than theories of 
intuitive physics (e.g., Young, Beckmann, & 
Wasserman,   2006  ). It may well be that rats, for 
example, reason causally, but lack knowledge about 
mechanisms. Moreover, rats almost certainly do not 
have meta-knowledge about the concept of causal-
ity, which can be seen as a sign of advanced scientifi c 
reasoning and which may be unique to humans 
(Penn et al.,   2008  ). 

 We have recently used predictions derived from 
causal model theory to explore rat behavior in causal 
reasoning tasks (Waldmann, Cheng, Hagmayer, & 
Blaisdell,   2008  , for an overview). Causal model 
theory is a computational account that specifi es the 
goals and capacities of organisms on an abstract 

level without making claims about the underlying 
psychological mechanism (cf. Call,   2006  ; Clayton, 
Emery, & Dickinson,   2006  ; Danks,   2008  ; Kacelnik, 
  2006  ; Krechevsky,   1932  ; Sloman & Fernbach, 
  2008  ). It is premature to take any stance regarding 
the underlying mechanisms, such as propositional 
(e.g., Mitchell, De Houwer, & Lovibond,   2009  ) or 
connectionist (Castro & Wasserman,   2009  ; 
Wasserman,   1990  ; Young,   1995  ) representations, to 
name two recently debated possibilities. If the 
behavior of rats (or any species) turns out to follow 
the predictions of causal model theory, then this by 
no means implies that they are consciously or 
unconsciously using causal Bayes nets in their minds 
or that the underlying mechanism is symbolic. Our 
primary question is simply whether rats use repre-
sentations encoding covariations or whether their 
behavior reveals that they go beyond covariations 
toward causal representations. Th is is an important 
question even for researchers who are interested in 
mechanisms. Should rats fall into the second class, 
then all models of mechanisms are incomplete that 
cannot take the step beyond covariations. 

 In this chapter, we review evidence from our 
laboratory suggesting that rats engage in basic forms 
of causal reasoning that appear to go beyond con-
temporary associative accounts and that more 
closely approximate a rational account (see also 
Beckers, Miller, De Houwer, & Urushihara,   2006  ; 
Sawa,   2009  ). Specifi cally, we show how rats may 
reason about the world in a manner consistent with 
causal model theory. Th ere are also some telling 
limitations to the rat’s ability to approximate ratio-
nal causal reasoners, which we will also discuss. In 
the remainder of the chapter, we review research 
from our laboratory that was conducted to pursue 
the following objectives: (1) determine if rats can 
form causal models, (2) establish whether rats 
understand actions as causal interventions, (3) eval-
uate what constitutes a good intervention, (4) assess 
whether rats use interventions to investigate causal 
structure, and (5) determine whether rats represent 
hidden events. In future work, we plan to investi-
gate the cognitive mechanisms underlying causal 
reasoning in rats, paying particular attention to the 
role of goal-directed action in reasoning about inter-
ventions; we will also examine the neural mecha-
nisms underlying interventions. 

 Our research is still in its infancy; thus, the 
experiments themselves raise many more questions 
than they answer. Th ey do, however, lay an impor-
tant groundwork that may serve as a foundation 
for the comparative analysis of causal cognition. 
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1 Th e fruits of this research can provide insight into 
the fundamental nature of the processes underlying 
causal cognition, which can help in refi ning the 
existing models of causal inference and in develop-
ing new ones. Th is work also has implications 
for cognitive science and philosophy by helping to 
discern the unique elements of human psychologi-
cal processes from those that are shared with other 
species. 

 Our experiments involve Pavlovian and operant 
conditioning procedures administered in commer-
cially available rodent test chambers (Fig.   11.2  , Med 
Associates, Georgia, VT). Th ese chambers are 
equipped with three speakers that can be used to 
present auditory stimuli (e.g., tones, white noise, 
click trains), an incandescent house light and a dif-
fuse light for the production of visual stimuli, two 
retractable levers (right and left) that can be inserted 
into or withdrawn from the chamber, and a food 
niche where sucrose solution (20 % ) can be deliv-
ered. Our subjects are female Long-Evans rats pur-
chased from a commercial vendor and maintained 
at 85 %  of their free-feeding weight to provide 
motivation for food-seeking behavior in the test 
chamber. Independent manipulations include pre-
sentations of audiovisual stimuli and pairings of 
these stimuli with sucrose solution. Dependent 
measures include lever-pressing behavior and nose 
poking into the food niche. Nose poking serves 
as a proxy measure of expectation of the delivery of 
food (sucrose solution). Th us, predictions of high 
and low expectations of food lead us to predict high 
or low rates of nose poking, respectively. Although 
not discussed explicitly below, independent factors 
were counterbalanced appropriately (e.g., which 
of two audio cues served in a particular functional 

role or which of two levers served a particular 
function).      

   Do Rats Form Causal Models?   
 Our fi rst experiment deployed the basic procedure 
that we have used throughout our research to teach 
causal models to rats (Blaisdell, Sawa, Leising, & 
Waldmann,   2006  ). Once established, this procedure 
allowed us to assess whether rats use these causal 
models to reason rationally (see next section). 

 We used Pavlovian pairings of a light with tone 
(light�tone) and light with food (light�food) to 
teach the rats a common cause model, in which a 
light was a common cause of both tone and food 
(left panel of Fig.   11.3  ; analogous to how air pres-
sure is a common cause to both changes in the 
barometer and changes in the weather, see Fig. 
  11.1  ). We did so by presenting two types of trials 
within each training session. On one type of trial, a 
diff use light was fl ashed on and off  for 10 seconds 
and after it terminated a steady tone was presented 
for 10 seconds. Th e second type of trial consisted of 
similar presentations of the fl ashing light followed 
upon its termination by a 10-second presentation of 
food (sucrose solution) by raising the dipper con-
taining sucrose into the food niche for 10 seconds, 
after which it was removed from the niche. We 
expected rats to form a common cause model repre-
sentation through these learning trials (additional 
procedural details can be found in Blaisdell et al., 
  2006  ).  

 Our learning procedure raises the question 
whether it is the appropriate technique to teach rats 
a common cause model. Whereas common cause 
models imply that the eff ects of the common cause 
(e.g., tone, food) are positively correlated, our sen-
sory conditioning procedure presented these events 
as negatively correlated: tone and food always occur 
in the absence of each other. It is, however, well 
established that learning trials such as the ones we 
have chosen may lead — at least with a small number 
of such trials — to sensory preconditioning, which is 
the excitatory response to an initially behaviorally 
neutral stimulus that had been paired with another 
initially behaviorally neutral stimulus that subse-
quently was conditioned as a conditioned stimulus 
(CS) (Brogden,   1939  ; Pavlov,   1927  ; Yin, Barnet, & 
Miller,   1994  ). To prevent the rats from directly 
experiencing a positive correlation between tone 
and food, which might cause them to induce a  direct  
causal relation between tone and food, we chose to 
use the sensory preconditioning procedure that 
 indirectly  links tone and food through its common 

     Fig. 11.2    Photograph of a rodent conditioning chamber used 
in the research from the Blaisdell lab discussed in this chapter.    
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1 cause, the light. Th us, we predicted that rats will 
learn about the direct causal relations between light 
and tone and light and food during the learning 
trials, and infer a positive correlation between the 
indirectly linked events tone and food without 
paying attention to the negative correlation in the 
learning input. Th is representation would then be 
consistent a common cause model (see also 
Waldmann et al.,   2008  ). Note that this hypothesis 
can be empirically tested by looking at whether 
tones elicit excitatory or inhibitory expectations of 
food. Our experiments clearly provide evidence that 
rats learn to expect food after the tone following 
second-order conditioning training. 

 All rats also received a third type of trial within 
each training session, consisting of simultaneous 
pairings of a 10-second click train with a 10-second 
delivery of food (sucrose). We used simultaneous 
pairings because prior work has found rats to be 
highly sensitive to the temporal relationship between 
events in sensory preconditioning (Leising, Sawa, & 
Blaisdell,   2007  ; Savastano & Miller,   1998  ). For 
example, in an appetitive sensory preconditioning 
experiment with rats in which a 60-second tone was 
paired with a 10-second light in Phase 1, and the 
10-second light was simultaneously paired with 
food in Phase 2, rats were observed nose poking the 
most during a subsequent test of the tone at the 
time that the food would be expected if rats had 
integrated the tone–light and light–food temporal 
intervals (Leising et al.,   2007  ). If rats in the current 

experiment integrated the light–tone and light–
food temporal intervals during training, then rats 
should expect food during the tone at test. 
Furthermore, because we wished to equate the time 
at which rats in the current experiment expected 
food during test trials with the tone and the click, 
we decided to present the click and food simultane-
ously during training. Th e simultaneous click–food 
trials established click as a direct cause of food and 
served as a control manipulation (see below). 

 Evidence that rats learned the second-order 
tone–food relationship came from a subsequent test 
phase in which rats were presented with the tone, 
but without presentations of light or food (observa-
tion test). (Note that each rat in the observation test 
condition was yoked to a master rat in an interven-
tion test condition described below. Each time the 
master rat pressed a lever in its chamber, both the 
master rat and the yoked rat received a presentation 
of the tone. We used this yoking procedure to equate 
the number and timing of tone presentations at test 
between the test conditions.) Th e results showed 
that the tone prompted the rats to expect food deliv-
ery, which was measured by the high rate of nose 
poking into the food niche (Fig.   11.4  , black bar for 
condition common cause). Th is behavior is consis-
tent with the view that the rats accessed a common 
cause model to infer from one eff ect (tone), through 
the light, to the other (food). Th is account is similar 
to mediational learning, in which an event such as 
the light can mediate conditioning to another event 

Learning trials

Light Tone

Light Food

Click : Food

Test trials

Tone

Click

Lever press Tone

Lever press Click

Light

Causal model

Food

Click

Tone

     Fig. 11.3     Left panel : Causal model presented to rats in Blaisdell et al. (  2006  , Experiment 1).  Center panel : Each causal link was 
presented separately (“�” signifi es temporal order, “:” signifi es simultaneous presentation).  Right panel : Test trials presented either the 
alternative eff ect of the cause of food (tone), the second cause of food (click), or these two events as a causal outcome of lever presses 
(click and tone were counterbalanced). Rats’ expectations of the presence of food were assessed by measuring their search behavior 
(nose poking). See text for details.    
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1 with which it is associated (e.g., tone) (Holland, 
  1990  ). Th e amount of responding during observa-
tion tests of the tone, which had a second-order 
relationship to the food during training, was equiv-
alent to the level of responding during observation 
tests of the click, which had a fi rst-order simultane-
ous relationship with the food during training (Fig. 
  11.4  , black bar for condition direct cause), suggest-
ing that both test stimuli elicited similar levels of 
expectation of food. (Each rat in the “observe” test 
condition received presentations of the click at test 
whenever a rat in the “intervene” test condition 
pressed a lever in its chamber.)      

   Do Rats “Do”?   
 Nose poking during the tone in the observation 
condition can be interpreted as evidence for the for-
mation of a common cause model, but it is also con-
sistent with the hypothesis that rats had formed a 
second-order associative relationship between the 
tone and the food (Pavlov,   1927  ; Yin, Barnet, & 
Miller,   1994  ). Th us, the crucial test of causal model 
theory requires a way to distinguish between predic-
tions made by associative accounts from those made 
by causal model theory. 

 One of the crucial distinctions discussed in the 
introduction was that causal model theory predicts 
that subjects should be sensitive to whether the 
event was merely observed (“seeing”) or was pro-
duced by an intervention (“doing”). According to 
this theory, the passive observation of an event 

should be represented diff erently from the same 
event being caused by an intervention (Sloman & 
Lagnado,   2005  ; Waldmann & Hagmayer,   2005  ). 
An intervention on an event should lead to the 
inference that this event is separated from its previ-
ously established causes — what Pearl (  2000  ) terms 
“graph surgery” and what cognitive psychologists 
call “discounting.” It has previously been shown 
that nonhuman animals are capable of discriminat-
ing between outcomes caused by their own actions 
and outcomes not caused by their own actions (e.g., 
Killeen,   1978  , 1981) — a prerequisite ability for 
inferences drawn from interventions. 

 Our central question was whether rats’ causal 
inferences are sensitive to the distinction between 
events that were merely observed and events that 
they have caused by means of an intervention. To 
test this competency, we (Blaisdell et al.,   2006  ) 
introduced a novel lever in the test phase (Fig.   11.3  , 
right panel). It is important to note that this is the 
fi rst time the rats had seen this lever. Th ey had never 
seen it during training and they had not had any 
experience pressing the lever prior to the test phase. 
(Note that rats in both the “intervene” and “observe” 
test conditions had a lever, but for rats in the 
“observe” test conditions, the lever was nonfunc-
tional: that is, pressing the lever had no stimulus 
consequences of any kind.) In the “intervene” test 
condition, the 10-second tone was presented when-
ever the rat happened to press the lever. We recorded 
nose poking into the food niche (measured by 
breaks in a photo beam projected across the entrance 
to the food niche) during each 10-second presenta-
tion of the tone during the test session as our assess-
ment of expectation of food delivery. 

 According to causal model theory, if the rats 
understood that their intervention (and not the light) 
produced the tone on the intervention test, then the 
tone should not lead them to expect food to be avail-
able (Fig.   11.5  , top-left panel). Th is possibility is 
analogous to our reasoning that when we tamper 
with the barometer, we should not expect the weather 
to change (see Fig.   11.1  , right panel). Indeed, the rats 
that turned on the tone through their intervention 
on the lever nose poked during the tone much less 
than did the rats receiving the “observe” test (see 
Fig.   11.4  , gray bar for condition common cause, 
modeled in Fig.   11.5  , top-right panel). Note that due 
to the yoking procedure, the rats in the “observe” test 
condition received an equal number of test trials with 
the tone as did subjects in the “intervene” test condi-
tion, equating stimulus exposure in the two testing 
procedures. Th e statistical relationship between tone 
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     Fig. 11.4    Results of Blaisdell et al. (  2006  , Experiment 1). Rats 
either observed tone and intervened in click, or observed click 
and intervened in tone (tone and click were counterbalanced). 
Error bars represent standard errors of the mean.    
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1 and food that was experienced during training was 
identical in the “intervene” and “observe” test condi-
tions; thus, an associative account would predict 
equal amounts of nose poking in both test condi-
tions. Our results, therefore, are consistent with 
causal model theory, but not with a conventional 
associative account.  

 To show that lever-pressing behavior did not 
simply interfere with nose poking, two more groups 
of rats were tested on the click instead of (and in a 
similar manner as) the tone (see Fig. 11.3, right 
panel). Causal model theory predicts that direct 
causes should lead to the expectation of their eff ect 
regardless of whether they were generated by an 
intervention or merely observed (Fig. 11.5, right 
panels). Interestingly, in this test situation, nose 
poking during the click that was produced by a lever 
press (“intervene” test) was not lower than nose 
poking during a click that was merely observed 
(“observe” test; see Fig.   11.4  , right-hand bars). If 
pressing the lever interfered with nose-poke respond-
ing (i.e., if the rat could not be doing both actions 
at the same time), then we should expect a similar 
disruption of nose poking during the click by the 
lever press. Th us, the pattern of results of Experiment 
1 of Blaisdell et al. (  2006  ) is fully consistent with 
the predictions of causal model theory, but not with 
those of associative accounts. 

 If lever pressing attenuates nose poking through 
response competition, then lever pressing and 
nose poking during each trial should be negatively 

correlated (that is, the more lever presses are recorded 
on a trial, the fewer nose pokes should be observed). 
Analysis of the correlations between mean trial lever 
presses and mean trial nose pokes in the “intervene” 
conditions of Experiment 1 of Blaisdell et al. (  2006  ) 
fails to support a response-competition account of 
the eff ect of the lever-press intervention in the 
common cause condition ( r  2  = 0.085,  p   >  0.38; Fig. 
  11.6  , left panel, diamond symbols). Correlations 
were also not negative in the direct cause condition 
( r  2  = 0,  p   >  0.98; Fig.   11.6  , left panel, square sym-
bols). Th us, there is no evidence that the diff erence 
in how lever pressing aff ected nose poking in the 
common cause versus direct cause conditions was 
driven by response competition.      

   Further Evidence Against 
Response Competition   
 Dwyer, Starns, and Honey (  2009  ) replicated the 
procedures of Blaisdell et al. (  2006  ). Th ey found, 
however, that nose poking was typically lower 
during trials in the “intervene” test conditions than 
in the “observe” test conditions. Th is was the case 
both for the tone (common cause condition) and 
click (direct cause condition) in their Experiment 1. 
We cannot tell at this point why Dwyer et al. failed 
to replicate the interaction between observing/
intervening and the causal model, which is crucial 
for our conclusion that rats reason causally, and 
which we have found in several experiments (see 
also below). Nevertheless, Dwyer et al.’s alternative 

Common cause

Light

FoodTone

Light

FoodTone

FoodClick

FoodClick

Direct cause

     Fig. 11.5    Predictions of causal model theory for each test condition of Blaisdell et al. (  2006  ), Experiment 1: Common cause 
intervene (top-left panel), Common cause observe (bottom-left panel), direct cause intervene (top-right panel), and direct cause 
observe (bottom-right panel). Graph surgery is predicted only in condition “common cause intervene,” depicted as the deletion of the 
arrow from the light to the tone resulting from the lever press�tone contingency at test (acknowledgment to Bernard Balleine for 
permission to use the cartoon rat).    
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1 interpretation explains neither our results nor 
their own. 

 Dwyer et al. (  2009  ) argued that their results are 
best explained by response competition. Th ey also 
suggested that such an account may plausibly apply 
to the results of Blaisdell et al. (  2006  ). We have 
already shown above that there was no evidence for 
response competition in our experiment. Moreover, 
a response-competition account is inconsistent with 
the interaction that we obtained in our studies. 
In fact, a closer inspection of the results from 
Experiment 1 of Dwyer et al.’s study reveals some 
inconsistencies with the response-competition inter-
pretation. Figure   11.7   shows the results of the repli-
cation by Dwyer et al. (  2009  ; Experiment 1) of the 
two days of testing as in Blaisdell et al. (  2006  ). Th ey 
reported a small, nonsignifi cant diff erence in nose 
poking during the tone between the “intervene” and 

“observe” test conditions for subjects tested on the 
common cause model, but signifi cantly less nose-
poke responding in the “intervene” than “observe” 
test condition for subjects tested on the direct cause 
condition. Th is pattern of results is exactly opposite 
from that reported by Blaisdell et al. (see Fig.   11.4  ). 
Dwyer et al. attribute their results to response com-
petition between lever pressing and nose poking 
during test trials. An analysis of the correlations 
between mean test trial lever presses and mean test 
trial nose pokes (raw data supplied by D. Dwyer, 
personal communication), however, fails to support 
this interpretation. Correlations were not signifi -
cantly negative in either the common cause test con-
dition ( r  2  = 0.029,  p   >  0.50; see Fig.   11.6  , right 
panel, diamond symbols) or the direct cause test 
condition ( r  2  = 0.008,  p   >  0.73; see Fig.   11.6  , right 
panel, square symbols). Although we have yet to 
determine the source of the puzzling diff erence 
in patterns of results obtained by Dwyer et al. 
and Blaisdell et al., in neither case do we believe 
that response competition can serve as a plausible 
account.  

 Another possible strategy to rescue an associative 
account of the fi ndings in Experiment 1 might be to 
argue for diff erences in tone–food and click–food 
associative strengths. Click had a fi rst-order rela-
tionship to the food, whereas tone had a second-
order relationship to the food. Second-order 
Pavlovian events are often noticeably weaker than 
fi rst-order events (but see Barnet, Cole, & Miller, 
  1997  ; Barnet, Grahame, & Miller,   1991  ; Cole, 
Barnet, & Miller,   1995  , for exceptions). If the lever-
press intervention did exert some interference, then 
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     Fig. 11.6    Correlations between mean trial nose pokes and mean trial lever presses from “intervene” test for the common cause 
(diamond symbols) and direct cause (square symbols) groups from Blaisdell et al. (  2006  ), Experiment 1 (left panel) and Dwyer et al. 
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Dwyer et al. (  2009  ) that serve as a direct replication of the design 
used by Blaisdell et al. (  2006  ). Black bars depict the Intervene test 
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1 it would more likely aff ect the second-order tone 
than the fi rst-order click. 

 Although the amount of nose poking during test 
trials of the tone and click in Experiment 1 (“observe” 
test conditions) were roughly equivalent, it may still 
be the case that the underlying click–food associa-
tion was stronger than the tone–food association 
and therefore less subject to interference from lever 
pressing. Th us, in Experiment 2, we compared two 
sensory preconditioning preparations that, like 
Experiment 1, predicted diff erent eff ects for the 
“intervene” and “observe” test conditions. We com-
pared the common cause condition (as in Experiment 
1) with a causal chain condition (Fig.   11.8  ). Causal 
chain training consisted of trials on which tone was 
forward-paired with light (tone�light) in Phase 1 
of sensory preconditioning, and then light was 
forward-paired with food (light�food) in Phase 2 
of sensory preconditioning. Common cause train-
ing was similar to Experiment 1 except that light–
tone trials were given all in Phase 1 and light–food 
trials were given all in Phase 2. Causal model theory 
predicts the same pattern for causal chains as for 
direct causes. If an indirect cause of an eff ect is pro-
duced by an intervention or observed, both the 
intermediate cause (light) and the fi nal eff ect (food) 
should be expected.  

 At test, the novel lever was inserted into the 
chamber and lever presses turned on the tone in the 
“intervene” test conditions but had no consequence 
in the “observe” test conditions. If lever pressing dis-
rupts nose-poke responding to events merely 
because they have a second-order relationship to 
food (and thus are weaker than a fi rst-order stimu-
lus), then nose-poke responding during the tone at 

test should be disrupted by the lever press in both 
the common cause intervene and causal chain inter-
vene test conditions. If, however, lever pressing 
disrupts nose poking during the tone through dis-
counting, then nose poking during the tone should 
be disrupted in the common cause intervene test 
but not in the causal chain intervene test (compare 
left and right panels of Fig.   11.8  ). Blaisdell et al. 
(  2006  , Experiment 2a) found that lever pressing did 
not disrupt nose poking during the tone in the 
“intervene” test condition for rats that received 
causal chain training (Fig.   11.9  , right panel). Th ey 
replicated a strong attenuating eff ect of the lever-
press intervention on nose poking during the tone 
in the rats that received common cause training, as 
seen in Experiment 1. Th is diff erence in how the 
lever press aff ected nose poking during the tone in 
the intervention conditions therefore fails to sup-
port the view that the lever-press intervention atten-
uated responding to the tone in Experiment 1 
merely because it had a second-order relationship to 
food. Rather, these results are consistent with the 
view that the rats acted as if they understood the 
causal relationship between their action and an out-
come (cf. Killeen,   1978  ). If in the chain conditions 
the tone was represented as a cause of the light, 
which was represented as a cause of food, then it 
should not have mattered whether the tone was 
merely observed or caused by an intervention; the 
food should have been expected in either case. 
Although nose-poke responding in the “observe” 
test condition was lower in the chain condition than 
in the common cause condition, responding was 
nevertheless signifi cantly higher than for a third set 
of rats for which the light had not been paired with 

Common cause

Light

Tone

Tone

Light

FoodFood

Causal chain

     Fig. 11.8    Predictions of causal model theory for each test condition of Blaisdell et al. (  2006  ), Experiment 2a. Common cause 
intervene (left panel) and causal chain intervene (right panel). Graph surgery is predicted only in condition “common cause 
intervene,” depicted as the deletion of the arrow from the light to the tone resulting from the lever press�tone contingency at test 
(acknowledgment to Bernard Balleine for permission to use the cartoon rat).    
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1 food during training (unpaired conditions in Fig. 
  11.9  ). (See, however, Dwyer et al.,   2009  , for diverg-
ing fi ndings on a chain structure; see discussion 
above.)      

   What’s So Special About Actions?   
 Our experiments provide supportive evidence for 
causal inferences in rats that associative theories fail 
to explain. A default assumption of causal model 
theory is that many of our interventions are 
 independent  of other events and that they determin-
istically fi x the state of the intervention variable — 
that is, the direct target of the intervention (e.g., the 
state of the lever) (Waldmann, Hagmayer, & 
Blaisdell,   2006  ). 

 Deterministic causes are more readily perceived 
as being causal than are probabilistic causes. Th e 
cause of a plant’s death is more readily apparent 
when it is yanked out by the roots and left on the 
ground than if it has been soaked by a strong 
rainstorm. Getting a fl u shot may or may not be 
an eff ective prophylactic against catching the fl u 
(current evidence is not overwhelming), but avoid-
ing contact with any person or surface infected with 
the fl u virus is a guaranteed prevention. 

 A cause that produces an eff ect in the absence of 
other confounding causes is easily recognized as 
having an independent unconfounded causal infl u-
ence on its eff ect. Causal relations can be readily 
induced on the basis of interventions that act inde-
pendently of the causal system on which they act 
(Woodward,   2003  ). Unlike externally observed 
events, self-generated actions typically are seen as 

independent (Killeen,   1978  , 1980), which would 
allow the actor to infer causality after very few (or 
even one) learning trials. Th is is the reason why 
experimental outcomes are always preferable to epi-
demiological correlations in establishing cause–
eff ect relationships in science and medicine. 

 Self-generated actions are often viewed by agents 
as both deterministic and independent; they may 
thus hold a special status for deriving causal knowl-
edge. “If I fl ick this switch, the light turns on. If I 
don’t fl ick the switch, the room remains dark.” Such 
a simple cause–eff ect relationship can readily be 
determined through intervention, whereas observa-
tions typically necessitate consideration of possible 
confounding factors. (Note that the agent does not 
have to actively intervene; the agent can merely 
observe another agent intervening or observe a for-
tuitous intervention, such as a book falling off  the 
shelf and accidentally fl icking the switch on during 
its fall to the fl oor. See discussion by Tomasello & 
Call,   1997  .) 

 We recently found evidence that rats treat their 
actions as special (Leising, Wong, Waldmann, & 
Blaisdell,   2008  ). We compared the effi  cacy of an 
action to that of a salient exogenous cue under con-
ditions in which both were equated in their conti-
guity and contingency with one of the eff ects (a 
tone) of a common cause model. All rats fi rst 
received common cause training (Phases 1 and 2) as 
in Blaisdell et al. (  2006  , Experiment 2a). Th en 
rats were allocated to one of three test conditions 
(Fig.   11.10  , bottom panel). Rats receiving the 
“intervene” test were presented with a 10-second 
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     Fig. 11.9     Left panel : Mean nose pokes during the light during Phase 2 light�sucrose pairings.  Right panel : Mean nose pokes during 
the tone at test. Error bars denote standard errors of the means. From Experiment 2a of Blaisdell et al. (  2006 )  (adapted with 
permission of  Science ).    
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1 tone every time they pressed the lever (except for 
lever presses that occurred while the tone was already 
on, which had no consequence). Each rat receiving 
the “observe” test was yoked to a rat in the “inter-
vene” test condition, so that the “observe” rat 
received a tone every time the “intervene” rat did. 
Th us, these two conditions replicated the “inter-
vene” and “observe” test conditions of Blaisdell et al. 
(  2006  ). In the third test condition (“exogenous 
cue”) each rat was also yoked to a rat in the “inter-
vene” test condition. Every time a rat in the “inter-
vene” test condition received a tone (because it 
pressed the lever), the rat in the “exogenous cue” 
condition received a presentation of a novel stimu-
lus (a click) followed by the tone. In Experiment 1 
of Leising et al. (  2008  ), the click remained on for 
10 second and was followed on its termination by 
the 10-second tone. In Experiment 2 of Leising 
et al., the click started as soon as the “intervene” rat 
to which it was yoked pressed the lever and termi-
nated as soon as the “intervene” rat stopped pressing 
the lever. Upon the termination of the click, the 
10-second tone was then presented. Th us, in 
Experiment 1 the duration of the click matched the 
duration of the 10-second light that had been paired 
with the tone during training, and in Experiment 2 
the duration of the click matched the duration of 
the lever press by the “intervene” rat on each test 
trial. Th e question was whether the click would 
be as eff ective as the lever press in leading rats 
to discount the causal infl uence of the common 
cause light (compare top-left and top-right panels of 
Fig.   11.10  ).  

 Figure   11.11   shows the results of both of these 
experiments. Consistent with the predictions of 
causal model theory, we found that the lever press 
but not the exogenous cue led to discounting of the 
common cause light. Th is fi nding is consistent with 
the assumption that actions have a privileged role 
for rats in causal inference.  

 One further important attribute of interventions 
concerns possible transfer eff ects. Causal model 
theory predicts that inferences drawn from an inter-
vention should be restricted to the moment of 
action and should not transfer to later tests in which 
the intervention is absent. Th us, a causal reasoner 
should be capable of switching back and forth 
between inferences based on actions or observations 
without being infl uenced by previous predictions. 
Unlike most associative processes, therefore, reason-
ing from the presence or absence of interventions 
should be path independent. 

 For example, if I water my front yard and then 
notice that the sidewalk is wet, I infer that it was I 
and not rain that caused the wet sidewalk. If on the 
very next day, however, I notice that the sidewalk is 
wet and I know that I haven’t watered my lawn that 
day, then I infer that it must have recently rained. 
Discounting of rain occurs in the instance in which 
I intervened, but that inference does not carry over 
to the next day on which I did not intervene; thus, 
no discounting is expected (see related example by 
Clayton & Dickinson,   2006  ). 

 Leising et al. (  2008  ) tested whether rats under-
stand this principle of interventional reasoning with 
a study replicating the training conditions from 

Group TestPhase 2Phase  1

Intervene Light Tone

Light Tone

Light Tone

Food Tone
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Light

Food Tone
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Click Light
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Intervene

?
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Light

FoodLight

FoodLight

LP

LP/Click

LP/Tone

     Fig. 11.10    Predictions of causal model theory for each test condition of Leising et al. (  2008  ), Experiments 1 and 2: common cause 
intervene (top-left panel) and exogenous cue intervene (top-right panel). Graph surgery is predicted only in condition “common cause 
intervene,” depicted as the deletion of the arrow from the light to the tone resulting from the lever press�tone contingency at test. It 
is questionable whether a click will produce graph surgery (depicted by the “?” in place of the arrow between the light and the tone). 
 Bottom panel : Experimental design of Leising et al. (  2008  ), Experiments 1 and 2 (acknowledgment to Bernard Balleine for permission 
to use the cartoon rat).    
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1 Blaisdell et al. (  2006  , Experiment 1) in which all 
rats were trained on both the common cause model 
(tone�light�food) and direct cause model (click–
food), except that the light�tone trials were all 
given in Phase 1, and the light�food and click–
food trials were all given in Phase 2 (Fig.   11.12  ). 
Half the rats then received testing on the tone 
(common cause test conditions), while the remain-
der received testing on the click (direct cause test 
conditions). Each rat received one test session of the 
“intervene” test condition and a second test session 
with the “observe” test condition (test order coun-
terbalanced).  

 Figure   11.13   shows that rats can fl exibly switch 
between responding inferentially to a tone that was 
observed versus a tone that was the result of their 

intervention. Hence, rats receiving training on the 
common cause model (tone�light�food) that 
intervened on the tone on Day 1 of testing — which 
reduced their expectation of food — had an increased 
expectation of food on Day 2 of testing, when they 
merely observed the tone. Importantly, this fi nding 
means that exposure to the contingent relationship 
between a lever press and the tone, which could lead 
to the acquisition of a lever press�tone association 
in the fi rst test session, did not transfer to aff ect 
responding on the second test session. Likewise, rats 
that had merely observed a tone on Day 1 — thus 
leading them to expect food — had a lower expecta-
tion of food on Day 2, when they intervened to pro-
duce the tone. As expected, a lever-press intervention 
did not aff ect food-related responding (nose poking) 
when rats were tested on a click that had been estab-
lished as a direct cause of the food, thereby replicat-
ing the results of Experiment 1 of Blaisdell et al. 
(  2006  ) and contradicting the results of Dwyer et al. 
(  2009  ).  

 One last piece of evidence supporting causal rea-
soning in rats follows from the immediacy of the 
causal inference derived from an intervention. We 
have a profound sense of causality when we acciden-
tally bump into a table and thereby spill a glass of 
wine, probably because we regard our own actions 
as unconfounded and deterministic (Woodward, 
  2003  ). We do not need multiple observations of this 
relationship to realize that we caused the wine to 
spill; it is immediately apparent on the very fi rst 
instance. Do rats likewise reason similarly about 
their impromptu eff ects on the world? 

 To answer this question, we performed a meta-
analysis of fi rst-trial test performance of nose pokes 
across all of our reported data sets involving common 
cause training and “intervene” and “observe” testing 
to determine whether the eff ect of an intervention 
on the expectation of food is present on the very fi rst 
test trial. Appetitive conditioning in which an exter-
nal stimulus, such as an audio or visual cue, signals 
delivery of food in a food niche under conventional 
parameters typically takes dozens of trials before 
food-seeking behavior comes under control of the 
cue (Gallistel & Gibbon,   2000  ). Moreover, inhibi-
tory behavioral control by a conditioned inhibitor 
takes an order of magnitude longer than by a condi-
tioned excitator to develop any measurable behav-
ioral control (Yin, Barnet, & Miller,   1994  ). 
Moreover, according to most contemporary models 
of associative learning, the eff ect of the fi rst learning 
trial should not be apparent until the second presen-
tation of the Pavlovian stimulus or instrumental 
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     Fig. 11.11    Results of test trials from Leising et al. (  2008  ), 
Experiment 1 (top panel) and Experiment 2 (bottom panel). 
Error bars show standard errors of the mean.    
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1 response (Mackintosh,   1975  ; Pearce & Hall,   1980  ; 
Rescorla & Wagner,   1972  ). Figure   11.14   presents 
the meta-analysis by Leising et al. (  2008  ), which 
shows a strong attenuating eff ect of a lever-press 
intervention on nose-poke responding during the 
tone on the fi rst trial on which the rat intervened to 

produce the tone. Th us, rats seem to understand on 
the very fi rst trial that their novel actions are causal. 
Th ese results are rational under the assumption of 
causal model theory that actions are typically viewed 
as independent and deterministic, but pose a chal-
lenge for associative models.      

Causal model

Light Click

FoodTone

Learning trials Test trials

Phase 1
Light     Tone

Test day 1
Lever press     Tone

Tone
Lever press     Click

Click

Test day 2
Tone

Lever press     Tone
Click

Lever press     Click

Phase 2
Light     Food
Click : Food

     Fig. 11.12     Left panel : Causal model presented to rats in Leising et al. (  2008  , Experiment 3).  Center panel : Training procedure. Each 
causal link was presented separately (“�” signifi es temporal order, “:” signifi es simultaneous presentation).  Right panel : Test trials 
presented either the alternative eff ect of the cause of food (tone), the second cause of food (click), or these two events as a causal 
outcome of lever presses (click and tone were counterbalanced). Rats received one of four test conditions: “intervene on tone” on test 
Day 1 followed by “observe tone” on Day 2; “observe tone” on Day 1 followed by “intervene on tone” on Day 2; “intervene on click” 
on Day 1 followed by “observe click” on Day 2; and “observe click” on Day 1 followed by “intervene on click” on Day 2. Rats’ 
expectations of the presence of food were assessed by measuring their search behavior (nose poking). See text for further details.    
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1    From Reasoning to Acting?   
 Children and adults use many cues to infer causal 
structure, such as temporal and spatial contiguity 
(Leslie & Keeble,   1987  ; Michotte, 1946/1963), 
temporal priority (Hagmayer & Waldmann,   2002  ), 
covariation and contingency (Cheng,   1997  ), and 
prior experience (see reviews by Lagnado et al., 
  2007  ; Young,   1995  ). But perhaps the most power-
ful and eff ective guide to causal structure comes 
from data produced by interventions — an idea that 
is currently transforming the fi elds of statistics, phi-
losophy, computer science, and psychology (Gopnik 
et al.,   2004  ; Woodward,   2003  ). Indeed, interven-
tions are the primary means by which scientists can 
diff erentiate causal relationships through experi-
mentation from mere observed patterns of correla-
tions. Th e core idea is this: Knowing that X directly 

causes Y means that, all else being equal, interven-
ing to change X can change Y (Pearl, 1988, 2000; 
Spirtes et al.,   1993  ; Woodward,   2003  ). Adults 
(Waldmann & Hagmayer,   2005  ), children (Gopnik 
et al.,   2004  ; Schulz, Gopnik, & Glymour,   2007  ), 
and, as we have shown above, even rats (Blaisdell 
et al.,   2006  , Leising et al.,   2008  ), are able to make 
correct causal predictions about interventions. 

 So far, we have focused on studies in which rats 
made observational and interventional predictions 
after having received purely observational learning 
input about causal models. Allowing an organism to 
actually intervene during the learning phase may 
also provide aid for inducing the correct causal 
model. To take an example from the introduction, 
assume, for example, you come from Mars and have 
no prior knowledge about the causal model under-
lying smoking, lung cancer, and yellowed teeth 
(adapted from Gopnik et al.,   2004  ). What should 
you assume about the causal relationship among 
this set of three variables if only covariation but no 
temporal information is available? In Figure   11.15  , 
a number of alternative models are depicted that are 
equally consistent with the learning input. One effi  -
cient strategy to constrain the set of models is to use 
interventions. You could, for instance, continue to 
smoke but whiten your teeth, or you could color 
your teeth yellow and not smoke. If lung cancer 
occurred in the former case but not the latter, then 
this result would strongly indicate that smoking and 
not yellow teeth was the direct cause of lung cancer. 
Reasoning about interventions is the basis of the sci-
entifi c method and of much everyday learning.  

 Th e ability to reason about interventions has an 
important functional implication: Knowledge of 
cause–eff ect relationships should enable one to use 
interventions on the cause to bring about a desired 
eff ect. Schulz et al. (  2007  ) showed that even young 
children (4 to 5 years old), through play with a 
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     Fig. 11.14    Mean nose pokes during the fi rst test trial for 
subjects in meta-analysis reported by Leising et al. (  2008  ). 
“Intervene” condition includes subjects that received common 
cause training and the “intervene” test. “Observe” condition 
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1 simple toy box with a switch and two gears, could 
discover the correct causal model representing the 
toy’s mechanism. 

 In our experiments, rats merely passively observed 
the causal model. Th e interventions in the test phase 
were used as just a tool to investigate rats’ inferences. 
An interesting question is whether rats would trans-
fer the knowledge they acquired in an observational 
context to their action system. If both systems were 
integrated, then rats should start pressing the lever 
more often if they were hungry and they thought 
that lever pressing causes food. Th ey should, how-
ever, refrain from pressing the lever if there was no 
causal but just a spurious noncausal relation to the 
food. Blaisdell et al.’s (  2006  ) experiments provided 
an opportunity to investigate this question. Based 
on the assumption that observational learning and 
interventional learning are integrated, we might 
expect that rats that intervened on the click in the 
direct cause condition of Experiment 1, or that 
intervened on the tone in the causal chain condi-
tions of Experiments 2a and 2b, should press the 
lever more often than should rats that intervened on 
the tone in the common cause condition. Moreover, 
we would expect rats in the direct cause and causal 
chain, but not in the common cause conditions 
receiving the “intervene” test, to press the lever 
(which resulted in the onset of the tone) more than 
rats receiving the “observe” test condition, for which 
pressing the lever did not result in the onset of the 
tone. Surprisingly, the experimental results indi-
cated that subjects in the common cause condition 
and direct cause condition of Experiment 1 made 
roughly the same number of lever presses (Fig. 
  11.16  ). Th us, rats failed to transfer observationally 
learned causal knowledge to their action system. 
Th is fi nding is especially remarkable given the con-
sistent fi nding that rats made diff erential predic-
tions of food based on interventions on an eff ect 
versus on a cause. If this failure holds up under fur-
ther scrutiny, then it highlights a very interesting 
and important constraint on the cognitive processes 
underlying causal cognition in the rat.  

 Whether human infants can freely transfer obser-
vational knowledge to actions is not yet fully known. 
It is interesting, however, that the ability to make 
inferences about hidden objects develops earlier 
in human infants than does the ability to reach for 
the hidden object — although infants are already 
capable of reaching for visible objects (Munakata, 
  2001  ; Munakata, McClelland, Johnson, & Siegler, 
  1997  ; Munakata & Yerys,   2001  ). Also, toddlers 
appear capable of using predictive relations between 

physically connected events to initiate causally eff ec-
tive actions only when the observed relationship 
between the connected events was initiated by a 
human agent, whereas they failed to show transfer 
when only a covarying sequence of inanimate events 
was presented to them (Bonawitz et al.,   2010  ). With 
age, children eventually develop the capacity to base 
action selection on causal representations, as do 
adult humans. Rats have so far not shown this 
ability. Th us, observational and interventional learn-
ing may represent separate systems in both rats and 
infants, which, at least in humans, are later inte-
grated into unifi ed causal representations.     

   Hidden Event Cognition   
 We rarely have direct access to all of the information 
about causal relationships that govern any particular 
system. A doctor can merely observe a patient pres-
ent with red and watery eyes, a runny nose, swollen 
and red tonsils, and a low-grade fever to infer a 
hidden viral cause of these symptoms. Likewise, it 
was the odd, unpredicted movements of Uranus 
that led Alexis Bouvard in the early 19th century 
and later Urbain Le Verrier in 1845 — both using 
the physical-causal system of Newtonian mechan-
ics — to postulate the existence of the as-yet-undis-
covered planet Neptune. 

 If rats form causal representations, as the evi-
dence seems to suggest, then to what extent do rats 
draw inferences about hidden causes? It turns out 
that when we fi rst conducted the chain experiment 
described above (Blaisdell et al.,   2006  ; Experiments 
2a and 2b), we made a startling discovery. During 
sensory preconditioning training of the causal chain, 
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     Fig. 11.16    Mean lever presses during trials with the tone 
(common cause) and noise (causal chain) in the “intervene” 
and “observe” test conditions, from Blaisdell et al. (  2006  ), 
Experiment 1. Error bars represent standard errors of the mean.    
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1 rats received pairings of the tone followed by the 
light (tone�light) and then pairings of the light 
followed by food (light�food). As we showed, this 
learning established a tone�light�food causal 
chain in which the tone is a cause of the light, which 
in turn is a cause of the food. We were surprised to 
fi nd very little nose poking in an unpublished 
experiment in which rats were tested with the tone 
(“observation” test condition). 

 At fi rst we thought that causal chain training had 
failed. In a subsequent test, however, we removed 
the light bulb with which the light had been pre-
sented during training. We did so based on the 
notion that perhaps upon hearing the tone at test, 
the rats expected to observe the light illuminate. 
Th e light did not illuminate at test, however, thereby 
violating the rats’ expectation. Th is failure for the 
light to illuminate in turn may have violated their 
expectancy that food would be delivered (because it 
had always followed delivery of the light during 
training), and therefore the rats did not nose poke 
in the feeding niche. By removing the light, it 
became ambiguous as to whether the light was on 
following the tone. Because the light had always fol-
lowed the tone during Phase 1 of sensory precondi-
tioning training, the tone�light contingency would 
plausibly lead the rats to expect the light to be pres-
ent following the tone at test, despite the fact that 
they could not verify the status of the light. Th e rats, 
therefore, might also continue to expect the food to 
be present during testing with the tone, in which 
case they should nose poke. 

 It turned out that when we directly tested this 
prediction (Blaisdell, Leising, Stahlman, & 
Waldmann,   2009  ), the rats did nose poke when the 
light was absent, but not when the (unlit) light was 
present during observation tests with the tone (Fig. 
  11.17  , top panel). In fact, nose poking in the light-
absent condition was signifi cantly greater than in 
the light-present condition (black bars), and also 
signifi cantly greater than an unpaired control group 
(gray bars) for which the light had not been paired 
with food during training (and thus, the light should 
not have raised the expectation of food).  

 Th is surprising result was our fi rst indication that 
rats distinguish between the explicit absence of an 
event and uncertainty about the invisible event’s 
status due to lack of information. Th at is, like human 
adults (Hagmayer & Waldmann,   2007  ) and even 
children (Kushnir et al.,   2010  ), rats seem sensitive to 
the conditions under which they should be able to 
observe an event and those conditions under which 
the event should be hidden from observation. 

 It could be argued, however, that the removal of 
the light bulb at test created a diff erent context from 
that in which sensory preconditioning treatment 
had been administered during training. Note that, 
as sensory preconditioning actually entails a nega-
tive contingency between the second-order tone 
and the food, the second-order tone may accrue 
both excitatory and inhibitory properties (sugges-
tion off ered by Tom Beckers, personal communica-
tion). To the extent that removal of the light bulb at 
test introduces a context shift, it is possible that the 
excitatory properties that accrued to the tone during 
training transferred to this new context more readily 
than did the inhibitory properties that may have 
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     Fig. 11.17     Top panel : Mean discrimination ratios for nose-poke 
responses during test trials with the second-order (paired) CS 
and the unpaired CS from Blaisdell et al. (  2009  ), Experiment 2. 
Testing was conducted either with the light present or absent. 
 Bottom panel : Mean discrimination ratios for nose-poke 
responses during test trials with the second-order CS with the 
light present or absent during testing. Testing occurred either in 
the same or diff erent context from where training took place. 
Error bars represent standard errors of the mean.    
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1 accrued to the tone (i.e., a renewal eff ect, Bouton, 
  1993  ; but see Bouton,   1994  , for evidence against 
greater context sensitivity of inhibition than excita-
tion to ambiguous stimuli). 

 To discriminate between these alternative 
accounts, we replicated the design of Blaisdell et al. 
(  2009  ) with the additional manipulation of testing 
the tone in the same context as training or in a 
diff erent context that was explicitly made to be 
dramatically diff erent from that experienced during 
training. Rats were allocated to four groups: 
present-same, absent-same, present-diff erent, and 
absent-diff erent. Present versus absent indicates 
whether the light bulb was present or absent during 
the test on the tone. Same versus diff erent indicates 
whether the test context was the same as or diff erent 
from the training context. If the reason Blaisdell 
et al. (  2009  ) found higher rates of nose poking in 
the light-absent test condition was due to a context 
shift created by removal of the light bulb, then by 
explicitly rendering the test context dramatically 
diff erent from the training context, we should 
observe high rates of nose poking in both groups 
tested in the diff erent context, irrespective of the 
presence or absence of the light bulb. 

 Figure   11.17   (bottom panel) reveals that testing 
in a very diff erent context actually resulted in rela-
tively little nose poking compared to pre-tone base-
line rates of nose poking. Only in the condition in 
which the tone was tested in the same context as 
used for training, but with the light bulb removed at 
test, did we observe nose poking to be signifi cantly 
above baseline rates. Th ese results replicate the 
initial fi ndings of Blaisdell et al. (  2009  ) and weaken 
the context-shift (i.e., renewal) account of their 
fi ndings. 

 Recently, we also started to explore a simpler 
paradigm designed to show that rats distinguish 
between the explicit versus ambiguous absence of 
anticipated events (Waldmann, Schmid, Wong, & 
Blaisdell,   2011  ). We used an extinction paradigm in 
which a light was fi rst consistently paired with food 
and then was extinguished by being presented in the 
absence of food. Th e crucial manipulation involved 
information about the absent food in the extinction 
phase. Whereas in the “cover” condition informa-
tional access to the food niche was covered by a 
metal plate, in the “no cover” condition, which rep-
resents standard extinction manipulation, the food 
niche was accessible. Notably, in both the “cover” 
and “no cover” condition, light was followed by the 
absence of food. Th e only diff erence was whether 
the food was explicitly (“no cover”) or ambiguously 

(“cover”) absent. Th e test phase (in which the 
food niche was uncovered for all animals) revealed 
higher rates of nose poking in the “cover” than in 
the “no cover” condition, suggesting that rats in the 
“cover” condition had higher expectations of food 
than did rats in the “no cover” condition. Th is dif-
ference is consistent with the hypothesis that the 
rats were able to understand that the cover blocked 
access to the outcome information, and therefore 
the changed learning input did not necessarily sig-
nify a change of the underlying contingency in the 
world. 

 An alternative explanation is that the greater 
amount of nose poking observed in the “cover” 
group was due to the renewal of excitatory respond-
ing after the cover was removed. Th at is, the intro-
duction of the novel cover during extinction could 
have created a diff erent context. It is well established 
that extinction in one context does not generalize to 
other contexts as readily as does excitatory condi-
tioning (Bouton,   1993  ). We tested this alternative 
account in a follow-up experiment that included an 
additional “cover control” group of rats that also 
had a novel cover introduced only during extinction 
treatment. For this group, however, instead of being 
placed over the food niche, the cover was placed 
next to the food niche. Th is “cover control” group 
therefore had the same nominal contextual change 
during extinction treatment as did the “cover” 
group, but without obstructing the food niche. It 
turned out that the “cover control” rats nose poked 
as little during the CS at test as did the “no cover” 
group, and signifi cantly less than did rats in the 
“cover” group. Th e fi nding weakens the view that a 
renewal eff ect underlies the observed eff ect.     

   Conclusions   
 Rats are capable of using covariation information to 
form causal representations. Th ese representations 
include direct cause–eff ect relationships as well as 
higher-order causal maps acquired through higher-
order associative procedures, such as sensory pre-
conditioning and second-order conditioning 
(Blaisdell,   2009  ). Th e fi ndings in the experiments 
by Blaisdell et al. (  2006  ) and Leising et al. (  2008  ) 
reviewed in this chapter support the framework of 
causal model theory as an account of rats’ learning, 
whereas they challenge the predictions of contem-
porary models of associative learning. Th e most 
important evidence for this claim is that rats that 
had solely passively observed causal relations distin-
guish in their predictions between states of predic-
tive variables that were merely observed versus 
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1 caused by an intervention. After observational learn-
ing rats predicted one of the eff ects (food) of a 
common cause model based on the observation of a 
further eff ect (tone) but discounted the tone cue as 
a predictor when it was generated by an interven-
tion, lever press. As predicted by causal model 
theory, no such dissociation was observed when the 
cue in the test phase represented a direct or indirect 
cause of the predicted eff ect (Blaisdell et al.,   2006  , 
Experiments 1, 2).Th is pattern of results supports 
causal model theory, but it is inconsistent with asso-
ciative accounts. Furthermore, the analysis of the 
correlations between lever pressing and nose poking 
during test trials failed to fi nd any evidence in favor 
of a simple response competition account. 

 Interventions were shown to be most eff ective 
when they consisted of an action, such as pressing a 
lever, compared to exogenous events, such as a novel 
auditory stimulus (Leising et al.,   2008  , Experiments 
1, 2). Furthermore, discounting was observed only 
at the moment during which an individual rat inter-
vened with a lever press (Leising et al.,   2008  , 
Experiment 3). No carryover eff ects of exposure to 
the lever press�tone relationship were observed on 
subsequent tests of the tone alone (in the absence of 
a lever-press intervention). Th is fl exibility in turn-
ing on and off  the discounting eff ect is another hall-
mark of causal reasoning. 

 Finally, a meta-analysis of fi rst-trial performance 
revealed discounting by a lever-press intervention 
on the very fi rst encounter with the novel contin-
gency between the lever press and the tone (Leising 
et al.,   2008  ). Th is result provides further support for 
causal model theory. 

 Most of our studies have focused on showing 
that causal reasoning in rats is consistent with the 
predictions of causal model theory. We have also 
discussed evidence, however, that demonstrates lim-
itations in rats’ powers of reasoning. Although the 
evidence is still preliminary and further research is 
planned, rats seem to have diffi  culty transferring 
their observationally gained knowledge to their 
action system. Although they correctly, in the frame-
work of causal model theory, diff erentiated between 
observing and intervening in their expectation of 
food depending on whether the test cue was part of 
the common cause map on the one hand, or the 
direct cause or causal chain map on the other, they 
did not adapt their actions to this knowledge. It 
may be that the procedures used in the two reported 
experiments performed in our laboratory were not 
sensitive enough to uncover this ability, or it may be 
that rats truly lack this ability altogether. We plan 

further research to address this issue. Nevertheless, 
if causal knowledge in rats is tied to the system used 
to acquire it (e.g., observations or actions), then 
interesting questions are raised about the quality of 
rats’ causal reasoning and the underlying psycho-
logical and neural mechanisms (cf. Bonawitz et al., 
  2010  , for a similar analysis applied to causal infer-
ences in young children). 

 In the fi nal empirical section of this chapter, we 
reviewed evidence from our laboratory that rats dis-
tinguish between the explicit absence of a visual 
event and uncertainty about the state of an unob-
served event due to lack of information (Blaisdell 
et al.,   2009  ). Rats were exposed to causal chain 
training resulting in the formation of the causal 
chain tone�light�food. When presented with the 
tone at test, rats expected food (assessed through 
nose-poke responding) more if the light bulb on 
which the light had been presented during training 
had been removed from the test chamber during 
testing than if the bulb remained in the chamber 
(although unlit). Th e rats acted  as if  they realized 
that the visible light should be on after the tone, 
whereas they seemed to understand that it may be 
on, just not visible, when the light has been removed 
from sight. We also studied this competency in a 
simpler paradigm. In an extinction study, informa-
tion about the light’s absence was explicit or infor-
mational access was prevented by a metallic shield. 
Again, rats clearly diff erentiated between these 
informational contexts. 

 Th ese experiments were motivated by comparing 
and contrasting two types of computational models: 
associative theories, which are tied to covariation 
information, and causal model theory, which pro-
vides a framework for translating covariation infor-
mation into deeper causal representations. Th e 
evidence reviewed provides evidence that, at least in 
some cases, the behavior of rats is better explained 
by causal model theory than by associative accounts. 
Th e evidence further suggests that rats, at least to 
some extent, go beyond the information given to 
form causal model representations. 

 Of course, we cannot yet claim based on our cur-
rent data that rats’ causal knowledge has the same 
sophistication as the causal knowledge of humans 
(Penn et al.,   2008  ). Th ey surely lack knowledge 
about mechanisms and lack an understanding of the 
abstract concept of causality, including notions of 
relations about relations and related analogical cog-
nition. Nevertheless, we have shown that rats’ causal 
reasoning goes beyond simple associative theories 
and embodies many aspects of causality that are 
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1 crucial components of causal representations (e.g., 
causal directionality, interventional inferences). 

 We certainly do not claim that rats have a meta-
cognitive understanding of their causal knowledge; 
probably much of human behavior also occurs in 
the absence of causal self-knowledge. Moreover, 
our studies test between theories on the computa-
tional level; they do not test how the computational 
accounts are actually represented in terms of mecha-
nisms. Th us, when we criticize associative theories, 
we discuss them as computational theories that deny 
that organisms go beyond covariation information 
in causal reasoning, not as accounts of possible 
neural mechanisms. 

 It may well be that our favored account, causal 
model theory, will eventually be implemented or 
subsumed within a complex theory that uses asso-
ciations as the basic building block (e.g., connec-
tionist neural networks). Th ere are many examples 
of processes that operate on the associative networks 
of the nervous system but that result in complex 
cognition. For example, vertebrates such as humans, 
rats, and pigeons often engage in pattern comple-
tion (such as second-order conditioning, sensory 
preconditioning, transitive inference, sequence 
learning, etc.) when some elements of a pattern are 
missing. Pattern completion has been found for spa-
tial (Blaisdell & Cook,   2005  ; Chamizo, Roderigo, 
& Mackintosh,   2006  ; Sawa, Leising, & Blaisdell, 
  2005  ), temporal (Arcediano, Escobar, & Miller, 
  2003  ; Leising, Sawa, & Blaisdell,   2007  ), as well as 
Pavlovian conditioning (Holland,   1990  ; Holland & 
Wheeler,   2009  ; Rudy & O’Reilly,   1999  ). Penn, 
Holyoak, and Povinelli (  2008  ) point out that a 
model of relational reasoning called LISA (Learning 
and Inference with Schemas and Analogies; Hummel 
& Holyoak,   2005  ) “provides an existence proof that 
the higher-order relational capabilities of a PSS 
[Physical Symbol System] can, in fact, be grafted 
onto a neutrally plausible, distributed connectionist 
architecture” (although this has been debated 
by others; see peer commentary on the original 
article). 

 So far, nobody has developed a connectionist 
model that implements the demonstrated computa-
tional features of reasoning with causal models. 
Th ere will likely be homologies, if not merely analo-
gies, between the way the nervous system instanti-
ates causal and other domains of knowledge, such as 
spatial, temporal, and equivalence relations 
(Blaisdell,   2009  ; Hawkins & Blakeslee,   2004  ; 
Urcuioli,   2008  ). A neurally plausible model of the 
mechanisms underlying causal reasoning is certainly 

a desideratum. We humbly submit that such a 
model needs to honor the computational constraints 
highlighted by causal model theory, which we have 
empirically validated in the research discussed in 
this chapter.      
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